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A technique of flow visualization by means of an expanded laser beam and trace
amounts of particulate additives is used to study the behaviour of newtonian and non-
newtonian elastic liquids in complex geometries. Differences in response are high-
lighted between the newtonian and non-newtonian fluids when these flow separately
in certain contraction flows and also in a two-dimensional T geometry. This infor-
mation is then used to interpret the behaviour when both types of fluid flow together
in the same geometry with a well-defined interface between them. Of major interest
is the observation that a newtonian liquid in the two-liquid situation (the other liquid
being non-newtonian) can behave as if it were highly elastic. We are led to associate
this behaviour with the boundary conditions existing at the interface between the
newtonian and the non-newtonian liquids.

Powerful finite-element numerical techniques are used in an attempt to simulate
the observed flow characteristics. The techniques are able to meet the challenges
posed by the two-liquid situation when botk liquids are newtonian. They are also

Vol. 323. A 1573 34 [Published 12 October 1987

Q]

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Qﬁ%%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MK
Www.jstor.org



450 D. M. BINDING AND OTHERS

- able to simulate the distinctive vortex structure observed when only one highly elastic
liquid is used in the experiments. They are, as yet, unable to meet the difficult
challenge where one of the two liquids is highly elastic. ,

The experimental and theoretical work has an obvious potential application to
the important practical problem of coextrusion’.

1. INTRODUCTION

This is essentially the third paper in a series which is attempting to understand the way
newtonian and non-newtonian elastic liquids behave in complex geometries. For convenience,
the previous papers by Cochrane et al. (1981) and Walters & Webster (1982) will be referred
to as parts 1 and 2, respectively. These papers contained many examples of how elastic liquids
can behave in a dramatically different fashion to newtonian liquids. Some of the major
conclusions reached were the following.

(i) Fluid inertia and fluid elasticity can often be opposing influences in the sense that
increasing the Reynolds number R is equivalent in qualitative terms to decreasing the relevant
elasticity number W.

(ii) Small asymmetries in the flow geometry can often have more than a proportionate
influence on flow characteristics in the case of highly elastic liquids.

(iii) The precise shape of re-entrant corners (i.e. whether they are sharp or in some sense
‘rounded’) can have a significant influence on flow characteristics in the case of highly elastic
liquids. :

(iv) Finite-difference techniques can often be used to advantage to predict the observed flow
characteristics, although these techniques are limited by the well known ‘high Weissenberg
number problem’/(see, for example, Crochet & Walters 1983; Crochet et al. 1984). The
numerical algorithms invariably become unstable and break down at some relatively small
value of the elasticity number. This limitation is not confined to our particular numerical
techniques but is common to all numerical simulation studies in what is a rapidly expanding
research field.

- The present paper seeks to add yet more experimental results to supplement those given in
parts 1 and 2, but, unlike the earlier work, a major emphasis of the present study concerns the
way two fluids, with different material properties, interact when they are made to flow in a
complex geometry with a well defined interface between them. Some experimental results are
provided for the case when two newtonian liquids are used, but the most provocative situation
is when one newtonian and one highly elastic non-newtonian liquid are used in the experiments.

Simulating the observed flow characteristics in the two-fluid situation involves, among other
things, the important task of determining the location of the interface between the fluids,
which is certainly not known a priori. Although finite-difference techniques based on body fitted
coordinates would be appropriate for solving the present problems, we have resorted instead
to finite-element techniques (see §5).

2. TEsT FLUIDS

Experiments have been carried out on fluids with three distinct types of behaviour. First,
newtonian fluids, which in our case were mixtures of water and maltose syrup (C.P.C., U.K.).
For convenience, we associate the letter N with the newtonian liquids and give the relevant
densities and viscosities in table 1.
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Secondly, we used so-called Boger fluids (see, for example, Boger 1977/78; Jackson et al.
1984), these being fairly dilute (~ 0.1 vol. %) solutions of 'polyacryla)midc (Magnafloc E10
supplied by Allied Colloids (U.K.) Ltd.) in a maltose syrup—water solvent.

Thirdly, an aqueous solution of polyacrylamide was used in some of the experiments, having
a higher concentration (1 vol. 9%,) than that used in making up the Boger fluids. For con-
venience, we refer to the Boger fluids as the B series and assign the letter P to the aqueous
polyacrylamide solution.

The B and P series are both examples of non- -newtonian elastic liquids, but there are
important differences between the two. To explain the most obvious differences, we refer to a

steady simple shear flow with velocity components referred to a cartesian reference frame given
by

vy = g%y, v, =13=0, (1)
where ¢ is a constant velocity gradient or shear rate. The corresponding stress distribution is

given by ,
P =7=q(9), ‘ 1

(2)
Pri—bae =1(9), Pro—Pps = Vz(?),J

where the p,, are the components of the stress tensor, 7 is the shear stress, 4 the apparent
viscosity, and v, and v, are the first and second normal stress differences, respectively. For the
newtonian fluids, it is well known that 7 is a constant and v, and v, are both zero. For the Boger
fluids, the solvent is relatively viscous and the polymer concentration low, so that it is again
found that 7 is (approximately) constant, although, now, the normal stress differences v, and
v, are not necessarily zero. Available experimental evidence would suggest that v, is very small
and can be taken to be zero within experimental error (cf. Keentok et al. 1980), but », can be
very high indeed (Boger 1977, 1978; Jackson et al. 1984). In fact »; can be higher than the
shear stress 7 indicating substantial viscoelastic behaviour. », is often found to be (approxi-
mately) a quadratic function of the shear rate representing so-called second-order behaviour
and it is possible to define two material parameters for the Boger fluids, namely the viscosity
7 and characteristic relaxation time A through the equations

T=1¢, v =291 3

Values of the density p, 7 and A for the Boger fluids used in this study are given in table 2.
Boger fluids are noted for high stresses in stretching flows and also for some anomalous time-
dependent antithixotropic behaviour at relatively high shear rates in steady shear flow. Details
of these and other non-newtonian effects may be found in Jackson et al. (1984) (see also Choplin
et al. 1983).
For the newtonian and Boger fluids, it is possible to define two non-dimensional numbers R

and W, given by
R=pUL/y, (4)

W= AU/L, , (5)

where U is a characteristic velocity and L is a characteristic length. R is the usual Reynolds
number and W is an elasticity number, sometimes called the Weissenberg number. Clearly, for
newtonian liquids W = 0. In some of the two-liquid situations, we find it more convenient to
simply quote the mean flow rate in each liquid. S

The Boger fluids have proved to be popular test fluids in non-newtonian fluid mechamcs

34-2
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TABLE 1. DENSITY AND VISCOSITY FOR NEWTONIAN LIQUIDS

density, P viscosity

fluid gem™ Pas
N4 1.35 3.53
N5 1.35 2.63
N6 1.35 2.96
N8 1.36 9.73
N9 1.36 4.43
N10 1.33 3.5

Ni11 1.32 2.0

TaBLE 2. ESTIMATED DENSITY, VISCOSITY AND RELAXATION TIME FOR BoGER FLUIDS

‘ density, p viscosity, 7
fluid gem™ Pas Afs
B44 1.36 6.6 0.29
B45 1.32 0.67 0.08
B46 1.35 2.07 0.16
B47 1.35 2.66 0.07
B49 1.35 2.32 0.24

on account of their constant viscosity, which makes it possible to define an unambiguous
Reynolds number. Changes in flow characteristics between newtonian and Boger fluids at the
same Reynolds number can then be associated with viscoelastic effects.

It is difficult to define a convenient Reynolds number for the more conventional polymer
solution P, which at the concentration level used shows marked viscosity variation with shear
rate. In fact, the viscosity can fall dramatically with shear rate, giving rise to so called ‘shear-
thinning’ behaviour. For the P solution, we choose to simply quote the relevant mean flow rates
in the present study.

Viscometric functions obtained from a Weissenberg Rheogomometcr (R16 model) for the

19, aqueous solution of polyacrylamide are displayed in figure 1. The relevant temperature
(20 °C) is that used in all the experiments of the present study.
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Ficure 1. Viscometric data for the 19, aqueous solution of polyacrylamide, P. Temperature is 20 °C.
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3. EXPERIMENTAL TECHNIQUE

A schematic diagram of the basic apparatus is given in figure 2. The fluids from reservoirs
A, and A, are circulated by means of Watson-Marlow type HRSV variable flow rate peristaltic
pumps B, and B,. Two damping bottles C, and C, act as buffers and smooth out the two flows.
The flows interact in the test section D and the mixture finds its way into the disposal container
E. When the liquids in reservoirs A, and A, are the same, it is of course possible to recycle the

fluid.
o Y

—==a

il \

Ficure 2. Schematic diagram of the basic experimental apparatus.

1%
=

Flow rates are measured by a conventional catch and weigh technique. The geometries used
in the test section are shown schematically in figure 3. The original T geometry, (figure 3a),
had a depth of 20 mm, but in later experiments one with a depth of 60 mm was available
(figure 35). This was constructed to ensure that the substantial changes in flow characteristics
due to viscoelasticity observed in the original T geometry were not due to any three-dimensional
effect brought about by the short depth of the apparatus. That three-dimensional effects were
absent in the original geometry was also investigated by varying the plane of flow observation
(see figure 11). -

fluid 1

Ficurk 3. Schematic diagrams of the geometries. (¢) T geometry, X = 20, ¥ = 750; (4) T geometry, X = 60,
Y = 510; (c) planar-step geometry; (d) axisymmetric geometry. All dimensions are in millimetres.
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We estimate that all the arms to the T geometries were of sufficient length to ensure that
‘fully developed’ conditions existed at both entrance and exit. Whereas the T geometry keeps
the two fluids separated until immediately before the contraction that is at 90° to the initial
flow, the planar step geometry (figure 3¢) allows the fluids to flow as two adjacent layers before
passing through the contraction. : :

The axisymmetric geometry (figure 3d) consists of two concentric cylinders and was con-
structed in such a way as to allow the inner cylinder to be placed at any distance from the
contraction. The final placement in the present experiments was chosen to allow the flow to
become ‘fully developed’ in the region above the contraction.

In figure 3 the characteristic length L used in the calculation of the Reynolds and Weissenberg
numbers is indicated for each of the geometries used. Notice that L relates to an ‘upstream’
position, i.e. a position reached by the fluid before it passes through the contraction.
Characteristic velocities were estimated by the following procedure for the constant viscosity
fluids. First the total volumetric flow rate was measured at the outlet of the geometry. Then,
from the photograph of the flow field, a region of fully developed flow was isolated and the
position of the interface between the two fluids determined. Standard formulae for Poiseuille
flow and Couette flow were then used to determine the flow rates of the individual fluids.

As in previous papers, we have resorted to a simple visualization technique, which requires
only trace amounts of particulate additives and which uses an expanded laser beam as
illuminating source (figure 4). A 5 mW helium-neon laser was spread into a narrow sheet of
light by means of a cylindrical lens and the flow captured by taking photographs with suitable
time exposures. The principle of the method is simple. Small particles, contained in and moving
affinely with the flow, give a visual representation of the flow as they are illuminated by the
laser light and photographed. In the present study, we used polyvinyl chloride particles with
a density of 1.4 g cm™ in connection with the newtonian and Boger fluids and a high-density
polyethelyne powder (Hoechst, U.K.) with a density of 0.94 g cm™ for the aqueous poly-
acrylamide solutions. We found it convenient to use 2 g of powder in every 101 of test fluid.

Because the grain size of the powders, when in suspension, was of the order of 0.1 mm in
diameter, it was our reasonable expectation that the particles faithfully followed the streamlines.
In the vast majority of the present experiments, we believe that this was indeed so. However,
there is evidence that in some parts of the flow field, where the flow is very strong, the particles
could not follow the streamlines (cf. figure 9).

For completeness we note that in the present study no interfacial instabilities were discernible.

direction

laser ‘
§ cylindrical @camera flow

, flow
direction

FiGure 4. Schematic diag}axh of the laser-based visualization system.
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4. EXPERIMENTAL RESULTS
(). The T geometry (one liquid)

We consider first the T geometry (figure 34). Confirmation that the flow characteristics
observed were two-dimensional effects was provided by an occasional movement of the laser
beam from its central position to positions nearer one of the bounding walls. Further con-
firmation was provided by complementary experiments in the wider geometry (figure 35).

In figures 5-9, plates 1-5, only one liquid is used in each experiment and the way viscous
and elasticoviscous liquids behave when the T geometry is used as a main channel with a right-
angle bypass connection is shown in figure 5. Here, there is only one feeder arm (A) with two
exit arms (B and C). The newtonian liquids found no difficulty negotiating the abrupt change
in direction near the bypass. In contrast the elastic liquids exhibited a characteristic overshoot.
Such an overshoot is a common feature of the behaviour of elastic liquids in many flows (see,
for example, Walters 1975) but the overshoot shown in figure 55 is certalnly a severe example
of the phenomenon. :

For the majority of the experiments in the T geometry, the fluids were supplied through two
of the arms (A and B) and the impinging streams then flowed through the remaining arm (C).
Figure 6 contains representative data for newtonian fluids. Over the -available range of flow
conditions, no distinctive features were observed except when flow in one of the entry arms was
stopped (or was extremely slow). The usual exposure time of 8 s was insufficient to capture any
vortex behaviour in figure 64, but when this exposure time was increased to 8 min 32 s, the
structure of the very weak recirculating vortex became evident (figure 65).

In figure 6¢, d the main interest lies in the posmon of the dividing streamline between the
two liquid streams.

The relatively uninteresting newtonian experiments are in marked contrast to those for the
Boger fluids, which are summarized in figure 7. Here, there are strong vortices present in all’
but the symmetrical case. The vortices occur near the lip in the arms containing the slower
moving fluid. Interestingly, the vortices essentially disappear when the flow rates in the entry
arms are balanced, although, even in this case, the streamlines have a different shape to those
found in the corresponding newtonian experiments.

The shear thinning P liquids also exhibit vortices in the T geometry (figures 8 and 9). The
streamlines in the wider T geometry given in figure 8 show clearly the presence of fwo
recirculating vortices even when the flow rates in the two entry arms are the same. This is in marked
contrast to the experiments for the B series elastic liquids.

In the experiments shown in figure 9 there is a marked flow instability, which is especially
evident within the vortex region. Also noteworthy in figure 9 is the obvious conglomeration of
trace particles with a consequential particle-free region. The flow is apparently so strong in this
region as to prevent the tracer particles being transported with the fluid, an example of the so-
called Uebler effect (cf. Metzner et al. 1969). :

(i) The T geometry (two liguids)
In all the experiments reported here, we are confident that over the timescale of the
experiments, the fluids could be considered to be immiscible.
Figure 10, plate 6, contains photographs of the streamlines when two different newtonian
liquids flow in the entry arms. The flow is very similar to that found in the one-newtonian-liquid
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situation with no added flow characteristics worthy of mention, except that there is enough
evidence in the figure to indicate that a knowledge of the Reynolds numbers alone in the
respective arms is not sufficient to define the flow. Itis certainly necessary to know the individual
viscosities.

We note that the recirculating vortex in figure 10¢ is not generated by the viscoelastic lip
vortex mechanism, which is so prevalent in the flow of elastic liquids (see, for example, Evans
& Walters 1986; Boger e¢f al. 1986) and is responsible for the vortices in figures 7-9. Rather,
the vortex in figure 10¢ is a residual of the large weak vortex which is present when flow in one
arm is stopped.

Of significant interest is the behaviour in the T geometry when one of the liquids is newtonian
and the other is from the B series. Figure 11, plate 7 contains representative photographs for
this situation. Here, strong recirculating vortices are found in the newtonian liquid, which is
behaving as if it were a highly elastic liquid (figure 11a, ¢). We must associate this unusual
behaviour with the (obviously severe) conditions at the interface between the two fluids.

Figure 11¢, which was taken near the base of the geometry for the same conditions as those
in figure 115 is included to confirm that the effect in the latter is two dimensional.

Figure 114 shows that if the flow in the newtonian liquid is strong enough, a vortex can be
generated in the slower moving Boger fluid.
 The photographs in figure 114, 4 have the same general shape as those found when the same
Boger fluid flows through each entry arm (figure 7) and the newtonian liquid in figure 11 is
certainly behaving as if it were an elastic liquid.

(iii) The planar step geometry (figure 3c¢)

Figure 124, plate 8, is a photograph of streamlines for a newtonian fluid flowing over a step
and figure 125, plate 8, for a Boger fluid, shows that conditions can be obtained for which the
flow is similar to the newtonian situation (cf. part 2). However, in contrast to newtonian fluids,
the Boger fluids may also exhibit a recirculating vortex near the lip of the contraction (figure
12¢, plate 8) or, at slightly higher flow rates, a vortex occupying a large region in the salient
corner. (The camera position used in this geometry means that there is a small three-
dimensional photographic effect that is evident near the step.) The vortex in figure 12¢ is a
further example of the lip vortex mechanism which has been studied in detail by Evans &
Walters (1986) and Boger ¢t al. (1986).

When a Boger fluid and a newtonian fluid are used in the step geometry, we can again obtain
a vortex in the newtonian fluid (figure 13, plate 9), which is certainly not obtainable without
the influence of the Boger fluid and which is of a shape that is unattainable for any other liquids
or for any other conditions that we have been able to study in the one-liquid case. Figure
13a, b are in fact further examples of the phenomenon that was emphasized in connection with
figure 11. _

When the roles of the newtonian and Boger fluids are reversed, the newtonian fluid may force
the Boger fluid into the salient corner as is seen in figure 13 ¢ or it may generate a vortex in the
Boger fluid in the salient corner (figure 134). There is now, however, an interesting secondary
vortex in the newtonian liquid. Indications are that the flow in this vortex is unstable. Figures
144, b and ¢, plate 10, are typical of the flow fields generated when shear thinning fluids flow
alongside Boger fluids in the planar step geometry. A vortex is generated in the salient corner
in the Boger fluid. In all three cases shown, the flow rate in the Boger fluid is fixed and that
of the shear thinning fluid is varied, with little effect on the size of the vortex.
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Ficure 5. T geometry (3a) with one fluid. Fluid enters at A and exits at B and C. The R and W numbers
are based on inlet conditions. () Fluid N9, R = 0.054, W = 0.0; (5) fluid B49: R = 0.071, W = 0.29.

(Facing p. 456)
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Ficure 8. T geometry (35) with shear thinning fluid P entering through arms A and B. (2) @, = 49.1 ml
st Qp=223mls™?; (b) @, = Q5 =35.7mls%,
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Ficure 9. T geometry (3a) with shear thinning fluid P entering through arms A and B. (e) Q, = @, = 5.2 mls™?;
() @Q,=Qg=7175mls™; (¢c) @, = Qg = 10.0 ml 572,
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Ficure 10. T geometry (3a) with newtonian fluids N10 and N11 entering through arms A and B, respectively.
(@) R,=0.09, Ry=0.41, total flow rate is 18 mls™'; (b) R, =0.14, R; =0.26, total flow rate is
15.4 mls™; (c) R, = 0.12, R, = 0.02, total flow rate is 6.45 mls7".
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Ficure 12. Flow patterns for one fluid flowing through the planar step geometry (3¢). (a) newtonian fluid N8,
R =0.058, W = 0, total flow rate is 13.2 ml s7}; (4) Boger fluid B46, R = 0.11, W = 0.027, total flow rate is
5.5 ml s7*; (¢c) Boger fluid B49, R = 0.12, W = 0.048, total flow rate is 6.6 ml s*; (<) Boger fluid B49, R = 0.13,
W = 0.052, total flow rate is 7.1 mls™.
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Ficure 13. Flow patterns for two fluids flowing through the planar step geometry (3¢). (2) Fluid 1 is B49,
Q,=6.2mls, fluid 2is N9, @, = 5.7 ml s7*; (b)) fluid 1is B47, Q, = 11.8 ml s, fluid 2is N8, @, = 13.2 mls™};
{c) fluid 1 is N9, Q, = 6.3 mls?, fluid 2 is B49, Q, = 6.2 ml s™*; (d) fluid 1 is N8, @, = 19.7 ml 57, fluid 2 is
B47, Q, = 11.8 mls™.
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i,

Fiure 14. Flow patterns for two fluids flowing through the planar step geometry. (a) Fluid 1 is P, @, = 0.3 ml s},
fluid 2 is B49, Q, = 6.2 mls™*; (b) fluid 1 is P, @, = 5.9 mls™", fluid 2 is B49, @, = 6.2 mls7; (¢) fluid 1
is P, @, = 35.2mls™?, fluid 2 is B49, @, = 6.2 ml s,
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(iv) The axisymmetric contraction geometry (figure 3d)

Figure 15 contains photographs for flow in the axisymmetric geometry. Figure 154, plate 11
for the newtonian liquid and figure 155, plate 12 for the Boger fluid are as expected, with
characteristic vortex enhancement in the latter. Of more interest in the present context is the
case when the Boger fluid is used as liquid (A) and the newtonian fluid as the lubricant (B).
We have dyed the Boger fluid to emphasize the flow in the newtonian lubricant. Here again,
there is substantial vortex activity in the newtonian liquid, which must be attributable to the
strong flow conditions existing at the interface between the two fluids.

5. NUMERICAL METHODS
- (1) One liquid

We wish to make use of available numerical methods for simulating the flow of the maltose
syrup—water mixtures and the highly elastic Boger fluids. Both types of fluid exhibit an
essentially constant viscosity in a steady simple shear flow, but whereas viscoelastic effects
cannot be detected in the mixture of water and maltose syrup, they are very strong in the case
of the Boger fluids.

The choice of constitutive equation for the maltose syrup—water mixture is straightforward
because the fluids are newtonian. We are able to write

p=—pl+T, o @
T =24, (1)

where p is the stress tensor, p an arbitrary isotropic pressure, | the unit tensor, T is called the
‘extra stress tensor’, 7 is the constant viscosity coefficient and 4 the rate of deformation tensor

defined by
d = }(Vo+ (Vv)7T), (8)

where v is the velocity vector and a superscript T denotes the transpose. In (6)—(8), the variables
are referred to a fixed rectangular cartesian set of axes.

The choice of constitutive equation for the Boger fluids is less straightforward. It has been
customary to employ the so-called Oldroyd B model with equations of state given by

v v
T+A, T = 2p,[d+2,d]. (9)

7], is @ constant viscosity coefficient and A, and A, are the relaxation time and retardation time,
respectively. The V denotes the upper convected time derivative introduced by Oldroyd (1950).
For the steady simple shear flow (1), the stress distribution for the Oldroyd B fluid is

T=4qN V1 = 2770(’11'—’12”2:}

(10)
v, =0.

It is clear from the discussion of §2 that the Oldroyd B model is at least adequate to describe
the steady simple shear properties of the Boger fluid. However, evidence is now available (see,
for example, Jackson et al. 1984 ; Boger et al. 1986) that the situation is more complicated than
was first imagined. At least two relaxation times are now thought to be preferred (as opposed
to the one in the Oldroyd B model) (cf. Boger et al. 1986) and there are other complicating

35 ‘ Vol. 323. A



458 D. M. BINDING AND OTHERS

factors such as antithixotropy (cf. Jackson et al. 1984). There is clearly a need for a detailed
appraisal of the use of relatively simple models to characterize real elastic liquids. This may be
a major undertaking with no guarantee of ultimate success. Accordingly, we continue to use
the Oldroyd B fluid in the present paper as a reasonably acceptable model for the Boger
fluids.

The flow of one fluid in the geometries of interest in the present paper can be simulated in
principle by using either finite-difference or finite-element techniques. However, the choice is
more restricted in the {wo-fluid situations and in our view the finite-element technique offers an
appropriate method of tackling such problems, although the addition of body-fitted coordinates
to our earlier algorithms could in principle lead us to the same capabilities. We therefore forsake
the finite-difference techniques that were used with some success in parts 1 and 2 and con-
centrate on the more versatile finite-element method. The latter method has been developed
in far greater depth in recent work in non-newtonian fluid mechanics (see, for example, Crochet
& Walters 1983 ; Crochet e al. 1984) and this is a further motivation for our move from finite-
difference to finite-element techniques.

Having confined attention to finite-element techniques, we must now acknowledge that the
one used to simulate (successfully) the one-liquid situations for constant viscosity liquids has yet
to be adapted for elastic liquids exhibiting variable viscosity behaviour. Accordingly, they
cannot be used to simulate the behaviour of the P series polymer solutions.

Equations (7) or (9) have to be solved in conjunction with the familiar stress equations of
motion, which in the absence of body forces, may be written in the form

—Vp+V-T=pDo/Dt, (11)

where D /Dt represents the convected derivative. The velocity components must also satisfy the

incompressibility constraint:
V-v=0. (12)

It is convenient to decompose the extra stress tensor in the following way (cf. Crochet et al.
1984). We write, for the Oldroyd B model,

T=T,+T 13
with v : (13)
v
T,+A, T, =29,d, (14)
T, = 2.4, (15)
From (9), (13)—(15), we have
N = No(A1—A3) /Ay, (16)
No = g As/ Ay (17)

In the numerical simulations, we confine attention to A,/A, = , this being the ratio usually
used in simulations to exhibit the effect of viscoelasticity for a given A, (see, for example, Crochet
et al. 1984).

The boundary conditions to be associated with the governing equations depend upon the
type of fluid model. We assume that the fluids do not slip along the solid boundaries and that
the velocity field is imposed at entry sections. The extra stress components are also specified in
the entry section for the part T, of T in (13). In an exit section, we impose a vanishing tangential
velocity component, whereas the normal surface force component vanishes in the newtonian
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case. The latter condition is invalid in the Oldroyd-B case because of the normal stresses; here,
the normal velocity profile is imposed at an exit section.

The flow domain is covered by a mesh of finite elements; in the examples treated in the
present paper we use isoparametric quadrilateral elements. In view of the implicit character
of the constitutive equations (9) as opposed to the explicit equations (7), we use different
discretization techniques for the newtonian and the Oldroyd B fluids. In the newtonian case,
the velocity field v and the pressure field p are discretized in terms of nodal values o', P! and
shape functions ¥, ¢,, respectively. We write

M N
0= o'y, 5.= X P, (18)
i=1 t=1
where M and N denote the number of nodes associated with the velocity and the pressure,
respectively. The symbols & and p stand for the finite-element approximation. For the velocity
field, we use a continuous representation in terms of biquadratic lagrangian shape functions.
In the examples dealing with a single fluid, we use a continuous representation for the pressure
in terms of bilinear shape functions. (The case of two different fluids is discussed in §5ii.)
To obtain the values v* and P, we apply the Galerkin method to the weak form of the stress
equations of motion (11) and the incompressibility constraint (12}, to give:

(V0T (—f1+ T +ypmoan = | i, (19)
0 9]
L¢,V-6dQ =0, (20)

where t denotes the contact forces applied on the boundary 02 of the flow domain Q.
For the newtonian fluid, we substitute for T the expression

T=9[Vé+ (VD)) (21)

obtained on the basis of (7) and (18). The combination of (19), (20) and (21) provides an
algebraic system of equations in terms of the nodal values v* and P

The substitution (21) is clearly impossible for the case of an elastic fluid of the differential
type. We again use (18)—(20), but we must now substitute, in place of T, the expression

T = g,[Vo+ (Vo)']+T,, 22)

and take note of the fact that T, is given by an implicit constitutive equation. The problem may
be solved by means of a mixed method in which the velocity field, the pressure and the extra
stress tensor are all discretized in terms of nodal values (see, for example, Crochet et al. 1984).
Thus, instead of (18), we write

. L M . N
,=XTin, 9=3%0'Y, p=3X P, (23)

f=1 =1 =1

where L denotes the number of nodes associated with the extra stress components, T; are the
nodal values and #, the corresponding shape functions, the nature of which will be discussed
below.

35-2
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In order to calculate the T}, we apply the Galerkin method to the constitutive equation,
i.e. ’
f a{T,+ 4, TV =9, (V6 + (V9)")} dQ = 0. (24)
Q

The system (19)—(24) supplies the necessary number of algebraic equations to calculate the
nodal values ¢, P! and T}. ‘

Selecting the shape functions #r,, i, and ¢, in (23) is a problem of major concern in simulating
the flow of elastic liquids. In the applications related to the flow of two fluids with an interface,
we use isoparametric quadrilateral elements in which the 77, and the ¥, are both biquadratic
lagrangian shape functions, whereas the ¢, are bilinear. It is well known, however, that
viscoelastic problems are difficult to solve (see, for example, Crochet & Walters 1983 ; Crochet
et al. 1984), one of the main reasons being the presence of important stress and velocity gradients
near discontinuities in the boundary of the domain. In a recent paper, Marchal & Crochet
(1986) have proposed a new set of shape functions, which now only apply to rectangular
elements. The flow domains used in these experiments can be covered by a mesh of such
elements, provided that it is not required to represent a curvilinear interface between two fluids
by means of element boundaries. Accordingly, we restrict use of this powerful new element
(which is called a hermitian element) to the one-fluid case.

The hermitian element is described in figure 16. For the velocity field, we use the velocity
components and the velocity gradients at the corners as nodal values; thus, hermitian shape
functions (HER 12) are used for the ¢,. The shape functions 77, must be able to reproduce every
gradient of the velocity vector §; in the present simulations we use bicubic lagrangian shape
functions (LAG 16). Finally, the ¢, are bilinear and the representation p for the pressure is
continuous. The use of the hermitian mixed finite element has allowed us to extend appreciably
the domain of convergence of our calculations, thus partly overcoming the high-Weissenberg-
number problem that limited the scope of the simulations in parts 1 and 2 (see also Crochet
et al. 1984). ’

v ! . ° )
HER12 LAG16
] . ° )
‘ . .
o0& \
*ox’ ¥y L

Ficure 16. Hermitian finite element used for the viscoelastic calculations.

(ii) Two liquids
We now consider the plane stratified flow of two immiscible fluids. A typical situation is
shown in figure 17. Fluids A and B enter the T geometry on the left- and right-hand sides,
respectively, and are evacuated through the vertical branch. The fluids do not mix along the
interface. The flow rates of A and B are known and we assume that the branches of the T are
long enough so that we may impose fully developed velocity (and stress) profiles in the entry
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Ficure 17. Typical geometry of stratified flow.

sections. The unknowns of the problem are the velocity fields in A and B and the location of
the interface €.

Fluids A and B have specific material properties such as viscosities 9, and 75 and relaxation
times A,, and A, The field and constitutive equations (11)—(15) apply to each fluid with the
appropriate material constants. Additional conditions must be provided along the interface. At
a point P of the interface €, let v, denote the external unit normal to the domain of fluid A,
and let 7, denote the unit tangent in the counterclockwise direction. Similarly, let vy and 74

denote the corresponding vectors with respect to the domain covered by fluid B (figure 17).
We have -
Vao=—Vp Ty=—Tp (25)
Limiting attention to steady state flows, we require that neither A nor B flow through the
interface, i.e.
VU, =0 =0, (26)

the subscript A or B affixed to a variable denoting its association with either fluid A or fluid
B.

We must also impose that the tangential velocity component is continuous across the interface
G, ie .
T,V =—1T5'Up. (27)

Let ¢, and ¢ denote the surface forces per unit area at point P acting upon fluids A and B,
respectively. We have

ta=(—pal+T\)vs, tg=(—ppl+Tp)vs ' _(28)
In the absence of surface tension between A and B, we must have .
t,+t;=0. v (29)

We note that in view of (28), the continuity condition (29) for the surface forces does not
necessarily require the continuity of the pressure p and of the components of the extra-stress
tensors T, and Ty, .

We cover the flow domain by a finite-element mesh and we require that the interface
coincides with element sides. A typical (coarse) mesh is shown in figure 18. Thus the interface
is discretized by means of the nodes that lie upon it. The elements on the left of the inter-
face are filled with fluid A, while those on the right are filled with fluid B. Assuming first that
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Figure 18. Typical (coarse) finite-element mesh for the geometry of figure 17.

the interface location is known, we describe the finite element equivalent of the conditions
(26), (27) and (29).

Conditions (26) and (27) are easily implemented once a continuous velocity field is imposed
across the mesh, i.e. the nodal velocity components on the interface are common to both fluids.
Similarly, in the absence of surface tension, the continuity condition (29) is easily implemented
by assuming equilibrium of the generalized nodal forces along the interface, as everywhere else
in the mesh.

For completeness, we note that we need to take into account the fact that the pressure may
be discontinuous across the interface. Furthermore, if a mixed method is used for calculating
the flow of elastic liquids, it is necessary to provide for the possibility of discontinuous stress
components across the interface. For the pressure, the problem is easily solved by selecting a
discontinuous representation. Indeed, the weak form (19) of the stress equations of motion does
not require that § be continuous. Thus, the pressure is approximated by complete first-degree
polynomials within each element, with discontinuities across the element boundaries. An
additional advantage of such a representation for the pressure is a better approximation to the
incompressibility constraint (12) because the number of discrete equations (20) is now higher
than that for the case where § is continuous. ,

A further possibility is to maintain a continuous representation but to assign fwo pressures at
each node of the interface, i.e. one for fluid A and one for fluid B. The same procedure can
be used for the extra stress components. However, it is inappropriate to elaborate any further
on this point, because viscoelastic stratified flows will not be calculated in this paper.

We now need to describe briefly the method used for locating the interface. Earlier in this
section, we assumed that the coordinates of the nodes on the interface are known, but in general
this is not the case. The method used here is similar to the one proposed by Kistler & Scriven
(1983). Consider in figure 19 a domain occupied by two fluids A and B separated by an interface
€, and let P be a node on the interface. At the outset, we require that, while we search for the
interface location, the node P will slide along the fixed line MN and be identified by its distance
s from M. In figure 18, for example, the nodes of the interface move on horizontal lines and
their location is identified by a horizontal coordinate. Thus, for each node of the interface, we
need to calculate one scalar variable, and for that purpose we use the only equation which has
not yet been implemented in our scheme, namely (26). Using an isoparametric representation
of the interface, we find that the normal vector v depends upon the location of the nodes and
we solve (26) in the mean. Details of this calculation will be presented elsewhere.
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Ficure 19. The motion of a point P on the interface is constrained to the straight line MN.

Finally, we need to solve a system of equations where the velocity components, the pressure
and the location of the interface are the unknowns. The nonlinear set of equations is solved by
means of Newton iterations, thus providing a quadratic rate of convergence.

6. NUMERICAL RESULTS
(1) One liquid

The situation in the T geometry when there is only one feeder arm is considered in figures
20 and 21. From figure 5a we determined the flow rates in the exit arms and we imposed these
as boundary conditions for both the newtonian and the viscoelastic cases. The viscoelastic
results were obtained by increasing progressively the value of the relaxation time of the Oldroyd
B fluid, maintaining the ratio of A,/A, as 3. The maximum value of A, that was attainable was
0.1s.

Ficure 20. Central region of finite-element mesh for calculating the flow of one liquid in a T geometry.

We used the hermitian elements with the mesh shown in figure 20, which contains 328
elements and 1425 nodes; the system contains approximately 5000 unknowns. Figure 21
compares the streamlines for the newtonian and the elastic liquid situations, the latter
corresponding to a value of W = 0.044 in the entry section. It is clear that, qualitatively at
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(a) &

=

Ficure 21. Numerical simulation of flow in a T geometry with fluid entering at A and exiting at B and C.
(a) Conditions relevant to figure 5a with R = 0.054, W = 0 at entry. (b) Same conditions as for (a) except
W = 0.044.

least, the numerical simulation shows the same tendency as the experimental results, i.e. a
characteristic overshoot of the dividing streamline in the case of the elastic liquid. However,
the simulations are completely inadequate to predict a gross overshoot of the sort shown in
figure 5b. This is another example of the inadequacy of present numerical simulations to
predict quantitatively the behaviour of elastic liquids when extreme viscoelastic effects are in
evidence. This deficiency is not a reflection of the numerical method used. It rather points
to the inadequacies of the simple fluid models that are currently in use. Resolving this problem
may be a major undertaking.

We now confine attention to the situation in which fluid enters two arms of the T geometry.
The conditions encountered in the newtonian fluid experiments of figure 6 have been faithfully
reproduced in the numerical simulations given in figure 22. The agreement between experiment
and theory is excellent. In particular, the shape of the weak recirculating vortex in figure 224
is in very good agreement with the experimental features demonstrated in figure 654, and we
note with interest that it was the availability of the well-defined vortex structure in the
numerical simulation of figure 224 that motivated a detailed study of the precise form of the
weak vortex in the experiments (cf. §4i).

Early attempts to predict the distinctive features exhibited in the case when elastic liquids
flow in the T geomety were unproductive. The use of the finite-difference techniques of parts
1 and 2 and also the then available finite-element techniques failed to predict any vortex
activity. However, the use of the new hermitian elements, which were successfully used by
Marchal & Crochet (1986) to simulate contraction flows, has significantly advanced our
understanding of viscoelastic flow in a T geometry. This new development has allowed
numerical simulations to be performed at (and beyond) the conditions encountered in the
experiments. Figure 23 contains numerical simulations for a typical set of conditions, figure 235
representing conditions just before the numerical algorithm broke down. The appearance of
two lip vortices is evident with the larger vortex associated with the slower moving stream. This
is in qualitative agreement with the experimental results discussed in §4i. However, when the
simulations are compared with available experimental results as in figure 234 we see that there
is no quantitative agreement. There is therefore encouragement that important flow features are
now being simulated for the first time, but discouragement that quantitative agreement
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@kf ,

Figure 22. Numerical simulation of newtonian flow in a T geometry with (N4) fluid entering arms A and B.
(@) R, =0, Ry =0.058, total flow rate is 3.0 mls™*; (b) R, =0, R, = 0.058, total flow rate is 3.0 mls™;
(¢) R, =0.058, R;=0.058, total flow rate is 6.0 mls™*; (d) R, =0.065, Ry =0.028, total flow rate is

1)

4.8 mls™,

Q)

(a)

\|/[——

Ficure 23. Numerical simulation for an elastic liquid in the T geometry. (a) full line-numerical simulation for B45
(with A,/A, =1). The broken line represents streamlines determined from an experimental photograph.
R, =0.7, R, =03, W, = 0.068, W, = 0.03. (b)) Numerical simulation for B45 (with A,/A, = }). R, = 0.875,

Ry = 0.375, W, = 0.085, W, = 0.0375.
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between theory and experiment is far from being a reality when viscoelasticity results in gross
changes in flow characteristics. This is important, because it is clear from figure 23 that the
numerical simulations are for conditions that more than match those found in the experiments
and the high Weissenberg number problem is not a major concern. :

We remark that, if we use a popular Deborah number D, definition of the flow given by

De = /\1 7w1 (30)

where vy, is the wall shear rate in the exit arm, then the value of D, is approximately 10 for
figure 234 and approximately 12 for figure 23 .

The numerical simulation for the Oldroyd B model in the 4:1 step geometry (figure 3¢) is
included in figure 24 and this may be compared’ with the one-liquid experimental results of
figure 12. The appearance of a lip vortex is indicated in figure 24¢ and the simulations are in
favourable agreement with the experimental data of figure 12¢. However, it has not been
possible to simulate the vortex seen in figure 124. The value of D, in ﬁgure 24 ¢ was the
maximum attainable in the numerical simulations.

h

Ficure 24. Numerical simulation for an elastic liquid in the planar step géometry 3). (a) Expanﬂed view of the
mesh near the reentrant corner; (b) newtonian R = 0.058, W =0; (¢) B49, R = 0.062, W = 0.025 corre-
sponding to D, = 9.6.

(a)
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(i1) Two liquids .
Here, we attempt to simulate the two-(newtonian) liquid flow in the T geometry demon-
strated in figure 10. To facilitate this, we make use of the techniques developed in §5ii. The
interface is not known & priori and is calculated by means of the Newton—-Raphson algorithm.

~ The initial mesh is shown in figure 25. The nodes will move horizontally depending on the
location of the interface.

T
T I—T 1t

L-LLL

Ficure 25. Initial finite-element mesh for the two-fluid situation.

A slight problem was encountered at the contact point between the interface and the upper
wall near the stagnation point. Indeed, near the stagnation point, (26) is essentially trivially
satisfied and one obtains an indeterminacy for the location of the attachment point. In the
present paper we have imposed an angle of contact in between the wall and the interface.
Several other strategies have also been used in the course of the numerical developments.
However, they all lead to the same streamlines in the global flow, although some of them
produce important distortions of the elements near the wall. :

Figure 26 a—c shows the final deformed meshes corresponding to the flows demonstrated in
figure 27 a—c respectively. The streamlines in figure 27 may be compared with the corresponding
experimental photographs shown in figure 10. The agreement between numerical simulation
and experiment is excellent. Particularly gratlfymg is the agreement between figure 10¢ and
figure 27¢.

It has been possible to adapt the two-liquids strategy to cover elastic liquids. However, this
has necessarily involved the use of conventional finite elements (rather than the rectangular
hermitian elements) and the resulting simulations have not been able to reach or reproduce the
conditions and dramatic experimental results shown in figures 11, 13-15 (and are not therefore
included in this paper). This lack of utility is not surprising, because the use of such elements
cannot even predict satisfactorily the one-liquid characteristics. Successful exploitation of the
strategy discussed in §5ii to the two-(elastic) liquid situation must thercforc await the avail-
ability of new isoparametric elements. ‘
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Ficure 26. Final deformed meshes corresponding to flows demonstrated in figure 27.
(a) (b)

A

]

Ficure 27. Numerical simulation for two newtonian fluids N10 and N11 in the T geometry -(3 a) (cf figure 10).
(a) R, =0.09, Ry = 0.41, total flow rate is 18 ml s™*; (b) R, = 0.14, R, = 0.26, total flow rate is 15.4 mls™!;
(¢) R =0.12, R = 0.02, total flow rate is 6.54 mls™.

7. CONCLUSIONS

For completeness we summarize the main conclusions reached in this paper.

(i) When elastic liquids flow in a T geometry, substantial lip vortices appear that are not
present in the case of newtonian liquids. For constant viscosity Boger liquids, the lip vortices
essentially disappear when the flow rates in the two entry arms are balanced. This is not the
case for the shear thinning P polymer solutions. :

(ii) When two liquids are used in the experiments, one being newtonian and the other highly
elastic, the flow in the newtonian liquid can resemble that in a highly elastic liquid. We associate

this dramatic behaviour with the strong flow condition along the interface between the two
liquids.




INTERFACIAL FLOW EFFECTS 469

(iii) Finite-element techniques with new hermitian elements are able to simulate qualitatively
the flow characteristics found for elastic liquids in the T and step geometries. There is no
quantitative agreement and the present work adds further weight to the need for a detailed
reappraisal of the use of simple constitutive models in the simulation of flows where visco-
elasticity results in gross changes in flow characteristics.

(iv) The finite-element simulation of the flow of one or two newtonian liquids is excellent.
The application of the strategies used in the present paper to the flow of two elastic liquids must
await the development of new isoparametric elements.

We express indebtedness to Dr J. M. Marchal for significant assistance in the numerical
simulation aspects of the present work and Mr R. E. Evans for equally invaluable assistance in
experimental aspects of the work. D. M. B. was financed by a Research Grant from the S.E.R.C.
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FiGure 5. T geometry (3a) with one fluid. Fluid enters at A and exits at B and C. The R and W numbers
are based on inlet conditions. (a) Fluid N9, R = 0.054, W = 0.0; (4) fluud B49: R = 0.071, W = 0.29.
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Ficure 6. T geometry (3a) with newtonian fluid N4 entering through arms A and B. (a) R, = 0, R; = 0.058, total flow rate is 3.0 mls™*; (b) R, = 0, R, = 0.058, total flow rate
is 3.0 mls7'; (¢) R, = 0.058, R, = 0.058, total flow rate is 6.0 mls™*; (d) R, = 0.065, R, = 0.028, total flow rate is 4.8 ml s7*.
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Ficure 7. T geometry (3a) with Boger fluid B44 entering through arms A and B. (a) R, = 0.16, R, = 0, W, = 0.055, W, = 0, total flow rate is 1.6 ml s7'; (b) R, = 0.016, R, = 0.004,
W, = 0.053, W, = 0.013, total flow rateis 1.95 ml s7%; (¢) R, = 0.012, R, = 0.008, W, = 0.04, W, = 0.026, total flow rate is 1.95 ml s™; (d) R, = 0.014, R, = 0.014, W, = 0.048,
W, = 0.048, total flow rate is 2.8 ml s™.
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FiGure 8. T geometry (34) with shear thinning fluid P entering through arms A and B. (a¢) Q, = 49.1 ml
s™!, Qg =223 mls™; (b) Q, = Q= 35.7 mls™".
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FIGURE 9. T geometry (3a) with shear thinning fluid P entering through arms A and B. (a) @, = @, = 5.2 mls™%;

() Q.= Qs =7.5mls™?; (¢c) @, = Qg =10.0 ml s™*.
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Ficure 10. T geometry (3a) with newtonian fluids N10 and N11 entering through arms A and B, respectively.
(a) R,=0.09, R; =0.41, total flow rate 1s 18 mls™; (b) R, =0.14, R, = 0.26, total flow rate is
15.4 mls™!; (¢) R, = 0.12, R, = 0.02, total flow rate is 6.45 ml s
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Ficure 11. T geometry (3a) with Boger fluid and newtonian fluid entering through arms A and B respectively. (a) Fluid B44, R, =0.018, W, = 0.06, and fluid N4, R, = 0.006,
W,= 0, total flow rate is 2.1 ml s™*; (b) fluid B44, R, = 0.015, W, = 0.052, and fluid N4, R, = 0.024, W, = 0, total flow rate is 2.8 ml s™*; (¢) fluid B44, R, = 0.015, W, = 0.052

and fluid N4, R, = 0.024, W, = 0, total flow rate is 2.8 ml s™". Plane of laser near rear bounding wall. (d) Fluid B45, R, = 0.02

5, W, =0.002 and fluid N5, R, = 0.037,

W, = 0, total flow rate is 1.0 mls™".
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Ficure 12. Flow patterns for one fluid flowing through the planar step geometry (3¢). (a) newtonian fluid N8
I = l_].{_}."iS W = 0, total flow rate is 13.2 ml s™'; (b) Boger fluid B46, R = 0.11, W
5.5 ml s™; (¢) Boger fluid B49, R = 0.12, W = 0.048, total flow rate is 6.6 ml s
W = 0.052, total flow rate is 7.1 ml s

= (.027, total flow rate 1s
'; (d) Boger fluid B49, R = 0.13,
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Ficure 13. Flow patterns for two fluids ’t'ln::uﬂl.*h,-'ingr through the planar step geometry (3¢). (@) Fluid 1 is B49,
Q,=62mls ! fluid 21s N9, fQ = 5.Tmls™*; (b) fluid 1 1s B47, (1)1 = 11.8 mls™', fluild 2i1s N8, Q, = 1‘3 2mls*:
(¢) fluid 1 1s N9, Q, = 6.3 ml s, fluid 2 is B49, Q, = 6.2 ml s™*; (d) fluid 1 is N8, @, = 19.7 ml s7*, fluid 2 is
B47, @, = 11.8 mls
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FIGURE 14. Flow patterns for two fluids flowing through the planar step geometry. (a) Fluid 1 is P, @, = 0.3 ml s,
fluid 2 is B49, @, =6.2mls™; (b) fluid 1 is P, @, =59 mls™, fluid 2 is B49, @, =6.2 mls™*; (¢) fluid 1
is P, @, = 35.2 mls™, fluid 2 is B49, R, =6.2mls™".



(b) one fluid, B46, flow rate 1s 18.5 mls™*;

8.1 mls™!;

! fluid 2 is B46, flow rate is 8.3 ml s7*.

(@) One fluid, N6, flow rate 1s

(3d).

Ficure 15. Flow patterns for fluids flowing in the axisymmetric geometry
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